2017-04-05

(italiano / in Italian) Analisi Matematica II by Antonio Corbo Esposito

# playlist of the 79 videos (click the upper-left icon of the video)

source: Ingegneria Unicas    2015年4月8日
Presentazione del corso.Definizione di Campo. Esempi: Q, R, C, Z/p (p primo).Definizione di Spazio vettoriale. Esempi. Sottospazio vettoriale

# about the course:
Spazi vettoriali su R o C .Definizione e prime proprietà. Nozione di dipendenza lineare. Parte libera. Sistema di generatori. Spazi vettoriali di dimensione finita. Base. Teorema della dimensione. Prodotto scalare canonico in Rn. Sottospazi. Span. Proiezione su un sottospazio. Procedimento di ortogonalizzazione di Gram-Schmidt. Matrici. Prodotto matriciale. Matrici quadrate come esempio di algebra non commutativa. Determinante di una matrice quadrata. Definizione. Formule di Laplace. Proprietà del determinante. Matrici invertibili. Dipendenza lineare delle righe (o colonne) di una matrice non invertibile. Teorema di Binet. Rango di una matrice. Definizioni e proprietà. Determinazione del rango di una matrice. Sistemi lineari. Metodo di eliminazione di Gauss. Teorema di Rouché – Capelli. Matrici e applicazioni lineari. Matrice associata a una applicazione lineare. Cambiamento di base. Cambiamento della matrice associata a un endomorfismo mediante un cambiamento di base. Autovalori e autovettori di una matrice quadrata. Polinomio Caratteristico. Matrici simmetriche. Teorema spettrale (senza dim.). Coniche. Classificazione delle coniche. Coniche degeneri. Cenni sulle proprietà geometriche delle coniche. Riconduzione dell'equazione alla forma canonica con un cambiamento di variabile affine. Funzioni di più variabili reali. Limiti. Continuità. Derivate parziali e direzionali. Gradiente. Differenziabilità di una funzione di più variabili. Teorema del differenziale totale. Punti stazionari. Max e min liberi. Matrice Hessiana. Teorema di Schwarz. Max e min liberi (cond. suff.) Teorema delle contrazioni. Equazioni differenziali ordinarie. Definizioni. Problema di Cauchy. Teorema di esistenza e uncità locale per il problema di Cauchy (Picard). Cenni sul metodo della poligonale. Esercizi sulle eq. diff. lineari a coefficienti costanti. Esercizi su eq. diff. riconducibili a eq. lineari mediante sostituzione.

No comments: