2015-07-29

Systems Biology (Fall 2014) by Jeff Gore at MIT

# click the upper-left icon to select videos from the playlist

source: MIT OpenCourseWare 
MIT 8.591J Systems Biology, Fall 2014
View the complete course: http://ocw.mit.edu/8-591JF14
Introduction to cellular and population-level systems biology with an emphasis on synthetic biology, modeling of genetic networks, cell-cell interactions, and evolutionary dynamics. Cellular systems include genetic switches and oscillators, network motifs, genetic network evolution, and cellular decision-making. Population-level systems include models of pattern formation, cell-cell communication, and evolutionary systems biology.
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

Introduction to the class and overview of topics 1:07:20
Input function, Michaelis-Menten kinetics, and cooperativity 1:17:45
Autoregulation, feedback and bistability 1:18:41
Synthetic biology and stability analysis in the toggle switch 1:19:57
Oscillatory genetic networks 1:21:11
Graph properties of transcription networks 1:21:29
Feed-forward loop network motif 1:21:29
Introduction to stochastic gene expression 1:20:35
Causes and consequences of stochastic gene expression 1:20:42
Stochastic modeling 1:21:51
Life at low Reynold’s number 1:19:12
Robustness and bacterial chemotaxis 1:18:42
Robustness in development and pattern formation 1:21:18
Microbial evolution experiments and optimal gene circuit design 1:19:40
Evolution in finite populations 1:20:56
Clonal interference and the distribution of beneficial mutations 1:21:05
Fitness landscapes and sequence spaces 1:18:46
Evolutionary games 1:20:41
Survival in fluctuating environments 1:18:27
Parasites, the evolution of virulence and sex 1:18:44
Interspecies interactions 1:21:03
Ecosystem stability, critical transitions, and biodiversity 1:20:04
Dynamics of populations in space 1:20:47
The neutral theory of ecology 1:17:45

Computer Systems Security (Fall 2014) by Nickolai Zeldovich at MIT

# click the upper-left icon to select videos from the playlist

source: MIT OpenCourseWare  Last updated on 2015年7月15日
MIT 6.858 Computer Systems Security, Fall 2014
View the complete course: http://ocw.mit.edu/6-858F14
This is a class on the design and implementation of secure computer systems, focusing on threat models, attacks that compromise security, and techniques for achieving security.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

1. Introduction, Threat Models 1:17:13
2. Control Hijacking Attacks 1:27:39
3. Buffer Overflow Exploits and Defenses 1:21:38
4. Privilege Separation 1:23:29
6. Capabilities 1:21:57
7. Sandboxing Native Code 1:23:21
8. Web Security Model 1:22:49
9. Securing Web Applications 1:22:08
10. Symbolic Execution 1:22:16
11. Ur/Web 1:20:04
12. Network Security 1:18:26
13. Network Protocols 1:21:03
14. SSL and HTTPS 1:18:18
15. Medical Software 1:15:31
16. Side-Channel Attacks 1:22:16
17. User Authentication 50:50
18. Private Browsing 1:20:13
19. Anonymous Communication 1:20:13
20. Mobile Phone Security 1:22:00
21. Data Tracking 1:19:38
22. Guest Lecture by MIT IS&T 1:26:51
23. Security Economics 1:17:25

Algorithmic Lower Bounds, Fall 2014 (Erik Demaine / MIT)

# automatic playing for the 23 videos (click the up-left corner for the list)

source: MIT OpenCourseWare     Last updated on 2015年7月14日
View the complete course: http://ocw.mit.edu/6-890F14
MIT 6.890 Algorithmic Lower Bounds, Fall 2014
In this lecture, Professor Demaine gives a brief overview of the class, summarizing the prerequisite complexity theory and featuring two examples of hardness proofs in games.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

1. Overview 1:17:31
2. 3-Partition I 1:23:35
3. 3-Partition II 1:20:58
4. SAT I 1:20:32
5. SAT Reductions 1:21:39
6. Circuit SAT 1:18:40
7. Planar SAT 1:23:03
8. Hamiltonicity 1:21:08
9. Graph Problems 1:20:26
10. Inapproximability Overview 1:18:35
11. Inapproximability Examples 1:20:08
12. Gaps and PCP 1:22:54
13. W Hierarchy 1:21:13
14. ETH and Planar FPT 1:22:49
15. #P and ASP 1:22:36
16. NP and PSPACE Video Games 1:18:17
17. Nondeterministic Constraint Logic 1:20:01
18. 0- and 2-Player Games 1:20:38
19. Unbounded Games 1:22:38
20. Undecidable and P-Complete 1:23:22
21. 3SUM and APSP Hardness 1:19:23
22. PPAD 1:20:48
23. PPAD Reductions 1:23:00

Poker Theory and Analysis, IAP 2015 (Kevin Desmond / MIT)

# automatic playing for the 8 videos (click the up-left corner for the list)

source: MIT OpenCourseWare     Last updated on 2015年6月9日
MIT 15.S50 Poker Theory and Analysis, IAP 2015
View the complete course: http://ocw.mit.edu/15-S50IAP15
Instructor: Kevin Desmond
This course takes a broad-based look at poker theory and applications of poker analytics to investment management and trading.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

1. Introduction to Poker Theory 30:49
2. Analytical Techniques 1:08:29
3. Basic Strategy 1:11:45
4. Preflop Analysis 43:40
5. Tournament Play 46:26
6. Poker Economics 1:20:09
7. Game Theory 1:04:14
8. Decision Making 1:04:47

Topics in Mathematics with Applications in Finance (Fall 2013 at MIT)

# playlist of the 24 videos (click the upper-left icon of the video)

source: MIT OpenCourseWare       Last updated on 2015年4月23日
MIT 18.S096 Topics in Mathematics with Applications in Finance, Fall 2013
The purpose of the class is to expose undergraduate and graduate students to the mathematical concepts and techniques used in the financial industry. Mathematics lectures are mixed with lectures illustrating the corresponding application in the financial industry. MIT mathematicians teach the mathematics part while industry professionals give the lectures on applications in finance.
http://ocw.mit.edu/courses/mathematics/18-s096-topics-in-...
View the complete course: http://ocw.mit.edu/18-S096F13
Instructor: Peter Kempthorne, Choongbum Lee, Vasily Strela, Jake Xia
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

1. Introduction, Financial Terms and Concepts 1:00:30
2. Linear Algebra 1:12:37
3. Probability Theory 1:18:25
5. Stochastic Processes I 1:17:41
6. Regression Analysis 1:22:13
7. Value At Risk (VAR) Models 1:21:15
8. Time Series Analysis I 1:16:19
9. Volatility Modeling 1:21:16
10. Regularized Pricing and Risk Models 1:29:57
11. Time Series Analysis II 1:23:48
12. Time Series Analysis III 1:17:39
13. Commodity Models 1:20:45
14. Portfolio Theory 1:24:55
15. Factor Modeling 1:25:49
16. Portfolio Management 1:28:38
17. Stochastic Processes II 1:15:59
18. Itō Calculus 1:18:03
19. Black-Scholes Formula, Risk-neutral Valuation 49:52
20. Option Price and Probability Duality 1:20:29
21. Stochastic Differential Equations 56:06
23. Quanto Credit Hedging 1:37:37
24. HJM Model for Interest Rates and Credit 1:47:16
25. Ross Recovery Theorem 1:27:46
26. Introduction to Counterparty Credit Risk 1:21:35

Statistical Mechanics II: Statistical Physics of Fields (Spring 2014) by Mehran Karda at MIT

# automatic playing for the 26 videos (click the up-left corner for the list)

source: MIT OpenCourseWare     Last updated on 2015年5月14日
MIT 8.334 Statistical Mechanics II: Statistical Physics of Fields, Spring 2014
View the complete course: http://ocw.mit.edu/8-334S14
Instructor: Mehran Kardar
This is the second term in a two-semester course on statistical mechanics. Basic principles are examined in this class, such as the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Topics from modern statistical mechanics are also explored, including the hydrodynamic limit and classical field theories.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

1. Collective Behavior, from Particles to Fields Part 1 1:16:04
2. Lec 1 (continued); The Landau-Ginzburg Approach Part 1 1:24:13
3. The Landau-Ginzburg Approach Part 2 1:25:11
4. The Landau-Ginzburg Approach Part 3 1:18:43
5. The Landau-Ginzburg Approach Part 4 1:18:47
6. The Scaling Hypothesis Part 1 1:21:33
7. The Scaling Hypothesis Part 2 1:16:41
8. The Scaling Hypothesis Part 3 1:21:29
9. Perturbative Renormalization Group Part 1 1:21:38
10. Perturbative Renormalization Group Part 2 1:22:46
11. Perturbative Renormalization Group Part 3 1:28:00
12. Perturbative Renormalization Group Part 4 1:23:10
13. Position Space Renormalization Group, Part 1 1:22:58
14. Position Space Renormalization Group, Part 2 1:19:44
15. Series Expansions Part 1 1:18:15
16. Series Expansions Part 2 1:21:49
17. Series Expansions Part 3 50:26
18. Series Expansions Part 4 1:19:53
19. Series Expansions Part 5 1:19:53
20. Continuous Spins at Low Temperatures Part 1 1:22:47
21. Continuous Spins at Low Temperatures Part 2 1:21:19
22. Continuous Spins at Low Temperatures Part 3 1:22:01
23. Continuous Spins at Low Temperatures Part 4 1:20:41
24. Dissipative Dynamics 1:25:17
25. Continuous Spins at Low Temperatures Part 5 1:21:16
26. Continuous Spins at Low Temperatures Part 6 1:23:56

Solid, liquid, gas and … plasma? - Michael Murillo


source: TED-Ed     2015年7月28日
View full lesson: http://ed.ted.com/lessons/solid-liqui...
Have you ever seen static electricity cause a spark of light? What is that spark? What about lightning, the Northern Lights, or the tail of a comet? All of those things and many others – in fact, 99.9% of the universe -- are made of plasma. Michael Murillo gives the full picture on plasma.
Lesson by Michael Murillo, animation by Tomás Pichardo Espaillat.