# click the upper-left icon to select videos from the playlist
source: MIT OpenCourseWare Last updated on 2014年7月2日
MIT 6.042J Mathematics for Computer Science, Fall 2010
Instructor(s): Tom Leighton, Marten van Dijk
This course covers elementary discrete mathematics. Mathematical definitions and proofs are emphasized. Topics include formal logic, induction, graph theory, asymptotic notation and growth of functions, counting principles, and discrete probability.
View the complete course: http://ocw.mit.edu/6-042JF10
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
Lec 1 Introduction and Proofs 44:10
Lec 2 Induction 1:19:25
Lec 3 Strong Induction 1:22:00
Lec 4 Number Theory I 1:20:25
Lec 5 Number Theory II 1:18:45
Lec 6 Graph Theory and Coloring 1:22:51
Lec 7 Matching Problems 1:22:41
Lec 8 Graph Theory II Minimum Spanning Trees 1:23:26
Lec 9 Communication Networks 1:23:26
Lec 10 Graph Theory III 1:22:50
Lec 11 Relations, Partial Orders, and Scheduling 1:04:00
Lec 12 Sums 1:18:22
Lec 13 Sums and Asymptotics 1:23:40
Lec 14 Divide and Conquer Recurrences 1:22:46
Lec 15 Linear Recurrences 1:18:20
Lec 16 Counting Rules I 1:20:03
Lec 17 Counting Rules II 1:25:24
Lec 18 Probability Introduction 1:23:56
Lec 19 Conditional Probability 1:21:46
Lec 20 Independence 1:22:02
Lec 21 Random Variables 1:23:00
Lec 22 Expectation I 1:23:54
Lec 23 Expectation II 1:23:44
Lec 24 Large Deviations 1:23:23
Lec 25 Random Walks 1:17:53