Engineering Dynamics by J. Kim Vandiver (Fall 2011)

# automatic playing for the 39 videos (click the up-left corner for the list)

source: MIT OpenCourseWare     Last updated on 2014年7月2日
MIT 2.003SC Engineering Dynamics, Fall 2011
View the complete course: http://ocw.mit.edu/2-003SCF11
This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, linearization of equations of motion, and linear stability analysis of mechanical systems. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

1. History of Dynamics; Motion in Moving Reference Frames 54:19
2. Newton's Laws & Describing the Kinematics of Particles 1:11:09
3. Motion of Center of Mass; Acceleration in Rotating Ref. Frames 1:14:47
4. Movement of a Particle in Circular Motion w/ Polar Coordinates 56:17
R2. Velocity and Acceleration in Translating and Rotating Frames 47:06
5. Impulse, Torque, & Angular Momentum for a System of Particles 1:17:06
6. Torque & the Time Rate of Change of Angular Momentum 1:06:01
R3. Motion in Moving Reference Frames 41:09
7. Degrees of Freedom, Free Body Diagrams, & Fictitious Forces 1:11:43
8. Fictitious Forces & Rotating Mass 1:12:14
R4. Free Body Diagrams 41:04
9. Rotating Imbalance 1:14:32
10. Equations of Motion, Torque, Angular Momentum of Rigid Bodies 1:09:07
R5. Equations of Motion 43:13
11. Mass Moment of Inertia of Rigid Bodies 1:09:58
12. Problem Solving Methods for Rotating Rigid Bodies 1:11:22
R6. Angular Momentum and Torque 33:43
13. Four Classes of Problems With Rotational Motion 1:03:53
14. More Complex Rotational Problems & Their Equations of Motion 1:14:08
R7. Cart and Pendulum, Direct Method 42:51
Notation Systems 6:02
15. Introduction to Lagrange With Examples 1:21:17
R8. Cart and Pendulum, Lagrange Method 35:01
16. Kinematic Approach to Finding Generalized Forces 1:13:31
17. Practice Finding EOM Using Lagrange Equations 1:17:53
R9. Generalized Forces 44:56
18. Quiz Review From Optional Problem Set 8 37:27
19. Introduction to Mechanical Vibration
20. Linear System Modeling a Single Degree of Freedom Oscillator 1:15:55
21. Vibration Isolation 1:20:24
22. Finding Natural Frequencies & Mode Shapes of a 2 DOF System 1:23:02
R10. Steady State Dynamics 29:34
23. Vibration by Mode Superposition 1:17:07
24. Modal Analysis: Orthogonality, Mass Stiffness, Damping Matrix 1:21:52
R11. Double Pendulum System 40:20
25. Modal Analysis: Response to IC's and to Harmonic Forces 1:18:29
26. Response of 2-DOF Systems by the Use of Transfer Functions 1:21:30
27. Vibration of Continuous Structures: Strings, Beams, Rods, etc. 1:12:13
R12. Modal Analysis of a Double Pendulum System 52:25