1. Clicking ▼&► to (un)fold the tree menu may facilitate locating what you want to find. 2. Videos embedded here do not necessarily represent my viewpoints or preferences. 3. This is just one of my several websites. Please click the category-tags below these two lines to go to each independent website.
2018-03-07
隨機過程 Stochastic Processes--陳伯寧 / 交大
source: NCTU OCW 2017年9月20日
This course intends to provide students with the necessary (fundamental and advanced) background on random processes.
授課教師:電機工程學系 陳伯寧老師
課程資訊:http://ocw.nctu.edu.tw/course_detail....
更多課程歡迎瀏覽交大開放式課程網站:http://ocw.nctu.edu.tw/
1 8:29 Lec 00 隨機過程課程介紹
2 37:18 Lec 9-1 General Concepts Definitions (1/7)
3 52:00 Lec 9-1 General Concepts Definitions (2/7)
4 51:39 Lec 9-1 General Concepts Definitions (3/7)
5 47:03 Lec 9-1 General Concepts Definitions (4/7)
6 46:42 Lec 9-1 General Concepts Definitions (5/7)
7 43:23 Lec 9-1 General Concepts Definitions (6/7)
8 51:32 Lec 9-1 General Concepts Definitions (7/7)
9 44:58 Lec 9-2 General Concepts Systems with Stochastic Inputs (1/3)
10 52:11 Lec 9-2 General Concepts Systems with Stochastic Inputs (2/3)
11 23:40 Lec 9-2 General Concepts Systems with Stochastic Inputs (3/3)
12 1:03:34 Lec 9-3 General Concepts The Power Spectrum (1/3)
13 48:57 Lec 9-3 General Concepts The Power Spectrum (2/3)
14 21:27 Lec 9-3 General Concepts The Power Spectrum (3/3)
15 1:01:35 Lec 9-4 General Concepts Discrete-Time Processes
16 57:56 Lec 10-3 Random Walks and Other Applications Modulation (1/3)
17 56:41 Lec 10-3 Random Walks and Other Applications Modulation (2/3)
18 42:31 Lec 10-3 Random Walks and Other Applications Modulation (3/3)
19 33:14 Lec 10-4 Random Walks and Other Applications Cyclostationary Processes
20 1:11:14 Lec 10-5 Random Walks and Other Applications Bandlimited Processes and Sampling Theory
21 1:08:22 Lec 10-6 Deterministic Signals in Noise & Appendix 10A The Poisson Sum Formula
22 1:16:16 Lec 11-1 Spectral Representation Factorization and Innovations
23 47:31 Lec 11-2 Spectral Representation Finite-Order Systems and State Variables (1/3)
24 42:49 Lec 11-2 Spectral Representation Finite-Order Systems and State Variables (2/3)
25 51:03 Lec 11-2 Spectral Representation Finite-Order Systems and State Variables (3/3)
26 25:20 Lec 11-3 Spectral Representation Fourier Series and Karhunen-Lo`eve Expansions (½)
27 1:16:33 Lec 11-3 Spectral Representation Fourier Series and Karhunen-Lo`eve Expansions (2/2)
28 55:08 Lec 11-4 Spectral Representation Spectral Representation of Random Processes (½)
29 39:55 Lec 11-4 Spectral Representation Spectral Representation of Random Processes (2/2)
30 53:24 Lec 12-0 Spectrum Estimation Ergodicity based on Shift-invariant Event
31 40:26 Lec 12-1 Spectrum Estimation Ergodicity (1/3)
32 17:04 Lec 12-1 Spectrum Estimation Ergodicity (2/3)
33 58:52 Lec 12-1 Spectrum Estimation Ergodicity (3/3)
34 57:01 Lec 12-2 Spectrum Estimation (1/3)
35 37:47 Lec 12-2 Spectrum Estimation (2/3)
36 51:57 Lec 12-2 Spectrum Estimation (3/3)
37 37:44 Lec 13-1 Mean Square Estimation Introduction (1/2)
38 29:47 Lec 13-1 Mean Square Estimation Introduction (2/2)
39 1:03:21 Lec 13-2 Mean Square Estimation Prediction (½)
40 54:46 Lec 13-2 Mean Square Estimation Prediction (2/2)
No comments:
Post a Comment