2018-03-22

Control Bootcamp by Steve L. Brunton


source: Steve Brunton    2017年1月23日
This course provides a rapid overview of optimal control (controllability, observability, LQR, Kalman filter, etc.). It is not meant to be an exhaustive treatment, but instead provides a high-level overview of some of the main approaches, applied to simple examples in Matlab.
These lectures follow Chapters 1 & 3 from: Machine learning control, by Duriez, Brunton, & Noack https://www.amazon.com/Machine-Learni...
Chapters available at: http://faculty.washington.edu/sbrunto...
Other great references: 
A course in robust control theory. Dullerud & Paganini: https://www.amazon.com/Course-Robust-...
Mathematical treatment based on linear algebra.
Multivariate feedback control. Skogestad & Postle thwaite
https://www.amazon.com/Multivariable-...
Applied treatment with an emphasis on design and practical considerations.

19:32 Overview: Overview lecture for bootcamp on optimal and modern control. In this lecture, we discuss the various types of control and the benefits of closed-loop feedback control. 
24:47 Linear Systems
19:30 Stability and Eigenvalues
30:46 Linearizing Around a Fixed Point
32:30 Controllability
10:49 Controllability, Reachability, and Eigenvalue Placement
5:47 Controllability and the Discrete-Time Impulse Response
15:24 Degrees of Controllability and Gramians
13:34 Controllability and the PBH Test
10 6:57 Cayley-Hamilton Theorem
11 10:30 Reachability and Controllability with Cayley-Hamilton
12 15:09 Inverted Pendulum on a Cart
13 12:55 Eigenvalue Placement for the Inverted Pendulum on a Cart
14 13:04 Linear Quadratic Regulator (LQR) Control for the Inverted Pendulum on a Cart
15 11:03 Motivation for Full-State Estimation
16 8:03 Observability
17 11:38 Full-State Estimation
18 6:11 Kalman Filter
19 8:20 Observability Example in Matlab
20 11:08 Observability Example in Matlab (Part 2)
21 22:12 Kalman Filter Example in Matlab
22 8:34 Linear Quadratic Gaussian (LQG)
23 13:26 LQG Example in Matlab
24 8:13 Introduction to Robust Control
25 12:16 Three Equivalent Representations of Linear Systems
26 18:30 Example Frequency Response (Bode Plot) for Spring-Mass-Damper
27 19:15 Laplace Transforms and the Transfer Function
28 14:47 Benefits of Feedback on Cruise Control Example
29 11:12 Benefits of Feedback on Cruise Control Example (Part 2)
30 23:17 Cruise Control Example with Proportional-Integral (PI) control
31 11:20 Sensitivity and Complementary Sensitivity
32 8:27 Sensitivity and Complementary Sensitivity (Part 2)
33 7:22 Loop shaping
34 12:21 Loop Shaping Example for Cruise Control
35 9:56 Sensitivity and Robustness
36 9:02 Limitations on Robustness
37 5:19 Cautionary Tale About Inverting the Plant Dynamics

No comments: