Optics (Spring 2009 at MIT)

# click the upper-left icon to select videos from the playlist

source: MIT OpenCourseWare    2011年3月17日
MIT 2.71 Optics, Spring 2009
Instructor: George Barbastathis, Colin Sheppard, Se Baek Oh
View the complete course: http://ocw.mit.edu/2-71S09
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
This course provides an introduction to optical science with elementary engineering applications. Topics covered in geometrical optics include: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Topics covered in wave optics include: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product. Analytical and numerical tools used in optical design are emphasized. Graduate students are required to complete assignments with stronger analytical content, and an advanced design project.

Lec 1  Course organization; introduction to optics 1:36:44
Lec 2  Reflection and refraction; prisms, waveguides, and dispersion 48:55
Lec 3  Focusing, imaging, and the paraxial approximation 1:33:59
Lec 4  Sign conventions; thin lenses; real and virtual images 52:17
Lec 5  Thick lenses; the composite lens; the eye 1:45:51
Lec 6  Terms apertures, stops, pupils, and windows; single lens camera 53:31
Lec 7  Basics of mirrors, magnifiers, and microscopes 1:40:24
Lec 8  Telescopes; aberrations chromatic, spherical, and coma 48:08
Lec 9  More aberrations; optical design; GRadient INdex GRIN  1:40:12
Lec 11 The Hamiltonian formulation; introduction to waves 1:41:34
Lec 12 The wave equation; phasor representation; 3D waves 1:01:49
Lec 13 3D wave phenomena; introduction to electromagnetics 1:44:52
Lec 14 Maxwell's equations; polarization; Poynting's vector 59:12
Lec 15 Huygens principle; interferometers; Fresnel diffraction  1:36:17
Lec 16 Gratings amplitude and phase, sinusoidal and binary 1:14:44
Lec 17 Fraunhofer diffraction; Fourier transforms and theorems 1:39:13
Lec 18 Spatial filtering; lens transfer functions & transforms 58:49
Lec 19 The 4F system; binary amplitude & pupil masks 1:45:24
Lec 20 Shift invariance; pupil engineering; the Talbot effect  1:57:04
Lec 22 Coherent and incoherent imaging 1:34:20
Lec 23 Imaging with a single lens 55:09
Lec 25 Resolution; defocused optical systems 52:43
Lec 26 Depth of focus and field; polarization; wave plates  1:28:24
Design of a Cooke Triplet | MIT 2.71 Optics, Spring 2009 22:07
Holographic Particle Image Velocimetry | MIT 2.71 Optics, Spring 2009 15:11
Holographic Tomography | MIT 2.71 Optics, Spring 2009 14:04
Wigner Distribution Function and Integral Imaging | MIT 2.71 Optics, Spring 2009 21:25
Light Propagation in Sub-wavelength Modulated Media | MIT 2.71 Optics, Spring 2009 16:08
Accuracy Requirements in the Mechanical Assessment of Photonic Crystals | MIT 2.71 Optics 18:35

No comments: