Quantum Theory (Fall 2012) by Alexander Maloney at McGill University

# click the up-left corner to select videos from the playlist

source: Alexander Maloney      2014年12月8日
This was an advanced quantum theory class, taught to graduate students and final year undergraduates in the physics honours program. The course syllabus is available at http://www.physics.mcgill.ca/~maloney...
The course webpage, including links to other lectures and problem sets, is available at http://www.physics.mcgill.ca/~maloney...
The written notes for this lecture are available at http://www.physics.mcgill.ca/~maloney...

Lecture 1: Introduction. Quantum Kinematics. Hilbert Spaces. Bras and Kets. 1:21:42
Lecture 2: Linear Algebra. Operators and Observables. 1:18:57
Lecture 3: Unitary Operators and Symmetries. The Problem of Quantization. 1:15:15
Lecture 4: Wave Functions, Uncertainty Relation. 1:22:10
Lecture 4.5: Time Evolution Operator. Dyson Series. Time-Ordered Exponential. 1:22:16
Lecture 5: Schrodinger Equation. Hamilton-Jacobi Equation. Path Integrals. 1:21:13
Lecture 6: Path Integrals. Propagators. Aharonov-Bohm Effect. 1:22:30
Lecture 7: Harmonic Oscillator. Raising and Lowering Operators. Coherent States. 1:22:56
Lecture 8: WKB Approximation. Bohr-Sommerfeld Quantization. Euclidean Time. 1:21:27
Lecture 9: Quantum Statistical Mechanics. Density Matrices. Ensembles. 1:18:45
Lecture 10: Entanglement. Tensor Products. Measurement. 1:24:14
Lecture 11: Von Neumann Entropy. Canonical Ensemble. Bose-Einstein & Fermi-Dirac. 1:19:34
Lecture 12: Bose-Einstein Condensate. Euclidean Time Formalism. 1:21:29
Lecture 13: Symmetries. Groups & Representations. Parity. Identical Particles. 1:20:45
Lecture 14: Time Reversal. Anti-Unitary Operators. Lattice Symmetry. Band Structure. 1:20:01
Lecture 15: Continuous Symmetries. Lie Groups & Algebras. Angular Momentum. 1:20:28
Lecture 16: Angular Momentum. Spin. Representations of SU(2). 1:22:55
Lecture 17: Representations of SU(2). Galilean Boost Invariance. 1:20:15
Lecture 18: Representations of the Lorentz Group. Spinors. 1:22:54
Lecture 19: Spinors. Poincare Group. Time-Dependent Perturbation Theory. 1:19:07
Lecture 20: Interaction Picture. Dyson Series. Fermi's Golden Rule. 1:13:09
Lecture 21: Relativistic Quantum Mechanics. The Need for Quantum Field Theory. 1:19:55
Lecture 24: Dirac Equation. Dirac Sea. Magnetic Moment of the Electron. 1:20:10
Lecture 25: Quantum Computing. Quantum Cryptography. Deutsch's Algorithm. 1:15:09

No comments: