2016-11-30

Classical Mechanics (Winter 2010) by Alexander Maloney at McGill University

# click the up-left corner to select videos from the playlist

source: Alexander Maloney    2014年12月8日
This was an advanced mechanics class, taught to third-year undergraduates in the physics honours program. The course syllabus is available at http://www.physics.mcgill.ca/~maloney...
The course webpage, including links to other lectures and problem sets, is available at
http://www.physics.mcgill.ca/~maloney...
The written notes for this lecture are available at http://www.physics.mcgill.ca/~maloney...

Lecture 1: Introduction. Degrees of Freedom. Lagrangian Dynamics. 1:24:37
Lecture 2: Lagrangian Mechanics. Euler-Lagrange Equation. Hamiltonians. 52:19
Lecture 3: Action Principle. Calculus of Variations. 1:25:07
Lecture 4: Lagrange Multipliers. Near Equilibrium Dynamics. Oscillators. 1:19:30
Lecture 5: Harmonic Oscillator. Damped & Driven Oscillators. Greens Functions. 1:19:28
Lecture 6: Driven Oscillators. General One Dimensional Systems. 1:21:02
Lecture 7: Noether's Theorem. Two Body Problem. 48:58
Lecture 8: Solution of the Two Body Problem. 1:15:53
Lecture 9: Kepler's Laws. Planetary Orbits. Non-inertial Reference Frames. 1:18:23
Lecture 10: Rotating Reference Frames. Centrifugal, Coriolis and Euler Forces. 1:17:51
Lecture 11: Rotating Coordinate Systems. Foucault's Pendulum. 1:22:11
Lecture 12: Motion of Rigid Bodies. Inertia Tensor. 1:21:40
Lecture 13: Motion of Rigid Bodies. 1:21:13
Lecture 14: Euler Angles. Systems with Many Degrees of Freedom. 1:15:39
Lecture 15: Systems with Many Degrees of Freedom. Normal Modes. 1:18:46
Lecture 16: Hamiltonian Mechanics. Phase Space. 1:15:47
Lecture 17: Hamiltonian Evolution. Poisson Brackets. Noether's Theorem. 1:20:22
Lecture 18: Canonical Transformations. Generating Functions. 1:15:09
Lecture 19: Hamiltonian Evolution on Phase Space. Liouville's Theorem. 1:20:27
Lecture 20: Poincare Recurrence Theorem. Hamilton-Jacobi Equation. 1:26:07
Lecture 21: Quantization. Integrable Systems. KAM Theorem. 1:20:41
Lecture 22: Chaos. Attractors. Lyapunov Exponents. 1:21:29
Lecture 23: Chaos. Logistic Equation. Adiabatic Invariants. 1:04:30
Lecture 24: Review. 29:33

No comments: