# click the upper-left icon to select videos from the playlist
source: nptelhrd 2008年7月9日
Electronics - Probability & Random Variables by Prof. M. Chakraborty, Department of Electronics and Electrical Communication Engineering, IIT Kharagpur.
Lecture - 1 Introduction to the Theory of Probability 59:50
Lecture - 2 Axioms of Probability 59:49
Lecture - 3 Axioms of Probability (Contd.) 59:51
Lecture - 4 Introduction to Random Variables 59:37
Lecture - 5 Probability Distributions and Density Functions 59:48
Lecture - 6 Conditional Distribution and Density Functions 59:55
Lecture - 7 Function of a Random Variable 59:53
Lecture - 8 Function of a Random Variable (Contd.) 59:50
Lecture - 9 Mean and Variance of a Random Variable 59:54
Lecture - 10 Moments 59:47
Lecture - 11 Characteristic Function 59:55
Lecture - 12 Two Random Variables 59:53
Lecture - 13 Function of Two Random Variables 1:02:50
Lecture - 14 Function of Two Random Variables (Contd.) 59:47
Lecture - 15 Correlation Covariance and Related Innver 59:54
Lecture - 16 Vector Space of Random Variables 59:47
Lecture - 17 Joint Moments 59:54
Lecture - 18 Joint Characteristic Functions 59:48
Lecture - 19 Joint Conditional Densities 59:49
Lecture - 20 Joint Conditional Densities (Contd.) 59:57
Lecture - 21 Sequences of Random Variables 59:57
Lecture - 22 Sequences of Random Variables (Contd.) 59:45
Lecture - 23 Correlation Matrices and their Properties 59:53
Lecture - 24 Correlation Matrices and their Properties 59:50
Lecture - 25 Conditional Densities of Random Vectors 59:56
Lecture - 26 Characteristic Functions and Normality 1:00:58
Lecture - 27 Thebycheff Inquality and Estimation 59:55
Lecture - 28 Central Limit Theorem 59:55
Lecture - 29 Introduction to Stochastic Process 59:56
Lecture - 30 Stationary Processes 59:49
Lecture - 31 Cyclostationary Processes 59:52
Lecture - 32 System with Random Process at Input 1:00:01
Lecture - 33 Ergodic Processes 59:57
Lecture - 34 Introduction to Spectral Analysis 59:51
Lecture - 35 Spectral Analysis Contd. 59:57
Lecture - 36 Spectrum Estimation - Non Parametric Methods 59:50
Lecture - 37 Spectrum Estimation - Parametric Methods 1:00:04
Lecture - 38 Autoregressive Modeling and Linear Prediction 59:50
Lecture - 39 Linear Mean Square Estimation - Wiener (FIR) 59:57
Lecture - 40 Adaptive Filtering - LMS Algorithm 59:47
1. Clicking ▼&► to (un)fold the tree menu may facilitate locating what you want to find. 2. Videos embedded here do not necessarily represent my viewpoints or preferences. 3. This is just one of my several websites. Please click the category-tags below these two lines to go to each independent website.
Showing posts with label B. (figures)-C-M. Chakraborty. Show all posts
Showing posts with label B. (figures)-C-M. Chakraborty. Show all posts
2016-12-13
2016-12-07
Electronics - Adaptive Signal Processing by M. Chakraborty (IIT Kharagpur)
# click the upper-left icon to select videos from the playlist
source: nptelhrd 2009年1月9日
Electronics - Adaptive Signal Processing by Prof. M. Chakraborty, Department of E and ECE, IIT Kharagpur.
Lecture - 1 Introduction to Adaptive Filters 53:57
Lecture - 2 Introduction to Stochastic Processes 59:47
Lecture - 3 Stochastic Processes 59:46
Lecture - 4 Correlation Structure 57:04
Lecture - 5 FIR Wiener Filter (Real) 57:42
Lecture - 6 Steepest Descent Technique 55:27
Lecture - 7 LMS Algorithm 55:30
Lecture - 8 Convergence Analysis 59:25
Lecture - 9 Convergence Analysis (Mean Square) 54:42
Lecture - 10 Convergence Analysis (Mean Square) 53:24
Lecture - 11 Misadjustment and Excess MSE 56:13
Lecture - 12 Misadjustment and Excess MSE 56:47
Lecture - 13 Sign LMS Algorithm 54:45
Lecture - 14 Block LMS Algorithm 54:17
Lecture - 15 Fast Implementation of Block LMS Algorithm 1:00:49
Lecture - 16 Fast Implementation of Block LMS Algorithm 54:43
Lecture - 17 Vector Space Treatment to Random Variables 51:48
Lecture - 18 Vector Space Treatment to Random Variables 1:00:14
Lecture - 19 Orthogonalization and Orthogonal Projection 55:48
Lecture - 20 Orthogonal Decomposition of Signal Subspaces 54:59
Lecture - 21 Introduction to Linear Prediction 58:30
Lecture - 22 Lattice Filter 54:16
Lecture - 23 Lattice Recursions 55:41
Lecture - 24 Lattice as Optimal Filter 52:57
Lecture - 25 Linear Prediction and Autoregressive Modeling 55:57
Lecture - 26 Gradient Adaptive Lattice 51:51
Lecture - 27 Gradient Adaptive Lattice 56:20
Lecture - 28 Introduction to Recursive Least Squares 55:21
Lecture - 29 RLS Approach to Adaptive Filters 56:14
Lecture - 30 RLS Adaptive Lattice 1:01:43
Lecture - 31 RLS Lattice Recursions 54:40
Lecture - 32 RLS Lattice Recursions 55:16
Lecture - 33 RLS Lattice Algorithm 56:02
Lecture - 34 RLS Using QR Decomposition 59:52
Lecture - 35 Givens Rotation 1:00:16
Lecture - 36 Givens Rotation and QR Decomposition 59:48
Lecture - 37 Systolic Implementation 56:34
Lecture - 38 Systolic Implementation 48:52
Lecture - 39 Singular Value Decomposition 57:01
Lecture - 40 Singular Value Decomposition 55:49
Lecture - 41 Singular Value Decomposition 59:44
source: nptelhrd 2009年1月9日
Electronics - Adaptive Signal Processing by Prof. M. Chakraborty, Department of E and ECE, IIT Kharagpur.
Lecture - 1 Introduction to Adaptive Filters 53:57
Lecture - 2 Introduction to Stochastic Processes 59:47
Lecture - 3 Stochastic Processes 59:46
Lecture - 4 Correlation Structure 57:04
Lecture - 5 FIR Wiener Filter (Real) 57:42
Lecture - 6 Steepest Descent Technique 55:27
Lecture - 7 LMS Algorithm 55:30
Lecture - 8 Convergence Analysis 59:25
Lecture - 9 Convergence Analysis (Mean Square) 54:42
Lecture - 10 Convergence Analysis (Mean Square) 53:24
Lecture - 11 Misadjustment and Excess MSE 56:13
Lecture - 12 Misadjustment and Excess MSE 56:47
Lecture - 13 Sign LMS Algorithm 54:45
Lecture - 14 Block LMS Algorithm 54:17
Lecture - 15 Fast Implementation of Block LMS Algorithm 1:00:49
Lecture - 16 Fast Implementation of Block LMS Algorithm 54:43
Lecture - 17 Vector Space Treatment to Random Variables 51:48
Lecture - 18 Vector Space Treatment to Random Variables 1:00:14
Lecture - 19 Orthogonalization and Orthogonal Projection 55:48
Lecture - 20 Orthogonal Decomposition of Signal Subspaces 54:59
Lecture - 21 Introduction to Linear Prediction 58:30
Lecture - 22 Lattice Filter 54:16
Lecture - 23 Lattice Recursions 55:41
Lecture - 24 Lattice as Optimal Filter 52:57
Lecture - 25 Linear Prediction and Autoregressive Modeling 55:57
Lecture - 26 Gradient Adaptive Lattice 51:51
Lecture - 27 Gradient Adaptive Lattice 56:20
Lecture - 28 Introduction to Recursive Least Squares 55:21
Lecture - 29 RLS Approach to Adaptive Filters 56:14
Lecture - 30 RLS Adaptive Lattice 1:01:43
Lecture - 31 RLS Lattice Recursions 54:40
Lecture - 32 RLS Lattice Recursions 55:16
Lecture - 33 RLS Lattice Algorithm 56:02
Lecture - 34 RLS Using QR Decomposition 59:52
Lecture - 35 Givens Rotation 1:00:16
Lecture - 36 Givens Rotation and QR Decomposition 59:48
Lecture - 37 Systolic Implementation 56:34
Lecture - 38 Systolic Implementation 48:52
Lecture - 39 Singular Value Decomposition 57:01
Lecture - 40 Singular Value Decomposition 55:49
Lecture - 41 Singular Value Decomposition 59:44
Subscribe to:
Posts (Atom)