2018-02-13

Math Foundations C (150-- ) by Norman J Wildberger


source: njwildberger        2017年3月20日

34:40 150: What exactly is a set?
35:18 151: Sets and other data structures in mathematics
30:13 152: Fun with lists, ordered sets, multisets and sets I
17:07 153: Fun with lists, ordered sets, multisets and sets II
19:06 154: Fun with lists, ordered sets, multisets and sets III
24:49 155: The realm of natural numbers
29:47 156: The realm of natural number multisets
23:05 157: The algebra of natural number multisets
32:42 158: An introduction to the Tropical calculus
47:34 159: Inclusion/Exclusion via multisets
31:08 160: Unique factorization, primes and msets
19:13 161: Fun with lists, ordered sets, multisets and sets IV
28:11 162: Four basic combinatorial counting problems
27:09 163: Higher data structures
27:49 164: Arrays and matrices I
30:31 165: Arrays and matrices II
33:03 166: Maxel theory: new thinking about matrices I
26:54 167: Maxel theory: new thinking about matrices II
40:49 168: Maxel theory: new thinking about matrices III
35:21 169: Maxel algebra! I
20:30 170: Maxel algebra! II
28:16 171: Singletons, vexels, and the rank of a maxel I
36:27 172: Singletons, vexels, and the rank of a maxel II
32:06 173: A disruptive view of big number arithmetic
32:00 174: Complexity and hyperoperations
37:35 175: The chaotic complexity of natural numbers
31:51 176: The sporadic nature of big numbers
31:46 177: Numbers, the universe and complexity beyond us
25:49 178: The law of logical honesty and the end of infinity
22:27 179: Hyperoperations and even bigger numbers
43:15 180: The successor - limit hierarchy
21:52 181: The successor-limit hierarchy and ordinals I
25:18 182: The successor-limit hierarchy and ordinals II
42:17 183: Limit levels and self-similarity in the successor-limit hierarchy
31:42 184: Reconsidering natural numbers and arithmetical expressions
20:56 185: The essential dichotomy underlying mathematics
27:29 186: The curious role of "nothing" in mathematics
30:15 187: Multisets and a new framework for arithmetic
24:38 188: Naming and ordering numbers for students
30:05 189: The Hindu Arabic number system revisited
24:10 190: Numbers, polynumbers and arithmetic with vexels I
20:24 191: Numbers, polynumbers, and arithmetic with vexels II
29:38 192: Arithmetic with base 2 vexels
33:38 193: A new look at Hindu Arabic numbers and their arithmetic
27:22 194: Arithmetical expressions as natural numbers
26:37 195: Divisibility of big numbers
26:38 196: Back to Gauss and modular arithmetic
37:21 197: Modular arithmetic with Fermat and Euler
34:26 198: Unique factorization and its difficulties I
27:53 199: Unique factorization and its difficulties II
30:02 200: Mission impossible: factorize the number z
23:32 201: A celebration of 200 videos of Math Foundations 
24:27 202: Reciprocals, powers of 10, and Euler's totient function I
25:33 203: Reciprocals, powers of 10, and Euler's totient function II
27:48 204: Euclid and the failure of prime factorization for z
22:01 205: Negative numbers, msets, and modern physics
21:45 206: A new trichotomy to set up integers
23:41 207: Integral vectors and matrices via vexels and maxels I
23:40 208: Integral vectors and matrices via vexels and maxels II
21:20 209: A broad canvas: algebra with maxels from integers
21:06 210: Numbers as multipliers and particle/antiparticle duality I
28:57 211: Numbers as multipliers and particle/antiparticle duality II
23:18 212: The anti operation in mathematics
25:38 213: An introduction to abstract algebra
41:58 214: Logical challenges with abstract algebra I
19:49 215: Logical challenges with abstract algebra II
27:19 216: The fundamental dream of algebra
28:27 217: What is the Fundamental theorem of Algebra, really?
29:26 218: Why roots of unity need to be rethought
24:14 219: Linear spaces and spans I
34:19 220: Linear spaces and spans II
29:12 221: Bases and dimension for integral linear spaces I
45:27 222: Bases and dimension for integral linear spaces II
44:18 223: Integral row reduction and Hermite normal form
34:21 224: Lattice relations and Hermite normal form
27:53 225: Relations between msets

No comments: