source: tawkaw OpenCourseWare 2014年6月6日
MIT 18.085 Computational Science & Engineering I (Fall 2008 at MIT)
This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications.
Note: This course was previously called "Mathematical Methods for Engineers I".
View the Complete Course at: ocw.mit.edu/18-085F08
49 Lecture 36 Sampling Theorem 40:58
48 Lecture 35 Convolution equations, deconvolution, convolution in 2D 51:21
47 Recitation 13 50:29
46 Lecture 34 Fourier integral transform part 2 51:27
45 Lecture 33 Filters Fourier integral transform part 1 51:23
44 Lecture 32 Convolution part 2 52:04
43 Recitation 12 51:12
42 Lecture 31 Examples of discrete Fourier transform, fast Fourier transform, convolution part 1 51:42
41 Lecture 30 Discrete Fourier series 50:12
40 Lecture 29 Fourier series part 2 48:41
39 Recitation 11 54:08
38 Lecture 28 Fourier series part 1 49:23
37 Lecture 27 Finite elements in 2D part 2 52:33
36 Recitation 10 45:33
35 Lecture 26 Fast Poisson solver part 2, finite elements in 2D part 1 51:28
34 Lecture 25 Fast Poisson solver part 1 52:22
33 Lecture 24 Laplace's equation part 2 54:21
32 Recitation 09 51:35
31 Lecture 23 Laplace's equation part 1 49:53
30 Lecture 22 Gradient and divergence part 2 51:19
29 Lecture 21 Boundary conditions, splines, gradient and divergence part 1 53:22
28 Recitation 08 48:08
27 Lecture 20 Element matrices 4th order bending equations 50:13
26 Lecture 19 Quadratic cubic elements 52:36
25 Lecture 18 Finite elements in 1D part 2 51:36
24 Recitation 07 53:54
23 Lecture 17 Finite elements in 1D part 1 54:22
22 Lecture 16 Trusses part 2 48:41
21 Lecture 15 Trusses and A^TCA 46:42
20 Recitation 06 54:26
19 Lecture 14 Exam Review 52:30
18 Lecture 13 Kirchhoff's Current Law 54:37
17 Recitation 05 54:54
16 Lecture 12 Graphs and networks 50:28
15 Lecture 11 Least squares part 2 54:00
14 Lecture 10 Finite differences in time, least squares part 1 54:59
13 Recitation 04 56:18
12 Lecture 09 Oscillation 53:27
11 Lecture 08 Springs and masses the main framework 55:14
10 Recitation 03 56:13
09 Lecture 07 Positive definite day! 52:56
08 Lecture 06 Eigenvalues part 2 positive definite part 1 50:19
07 Lecture 05 Eigenvalues part 1 56:12
06 Recitation 02 51:13
05 Lecture 04 Delta function day! 55:39
04 Lecture 03 Solving a linear system 54:40
03 Lecture 02 Difference equations 52:27
02 Recitation 01 Key ideas of linear algebra 49:32
01 Lecture 01 Four special matrices 54:05
Course Introduction 4:12