**# playlist of the 40 videos (click the up-left corner of the video)**

source: nptelhrd 2014年8月12日

Mechanical - Mathematical Methods in Engineering and Science by Dr. Bhaskar Dasgupta, Department of Mechanical Engineering, IIT Kanpur. For more details on NPTEL visit http://nptel.ac.in

Mod-01 Lec-01 Introduction 52:23

Mod-01 Lec-02 Basic Ideas of Applied Linear Algebra 52:06

Mod-01 Lec-03 Systems of Linear Equations 51:43

Mod-01 Lec-04 Square Non-Singular Systems 59:50

Mod-01 Lec-05 Ill-Conditioned and Ill-Posed Systems 55:29

Mod-02 Lec-06 The Algebraic Eigenvalue Problem 56:31

Mod-02 Lec-07 Canonical Forms, Symmetric Matrices 55:13

Mod-02 Lec-08 Methods of Plane Rotations 56:16

Mod-02 Lec-09 Householder Method, Tridiagonal Matrices 1:00:16

Mod-02 Lec-10 QR Decomposition, General Matrices 57:37

Mod-03 Lec-11 Singular Value Decomposition 58:38

Mod-03 Lec-12 Vector Space: Concepts 54:51

Mod-03 Lec-13 Multivariate Calculus 56:17

Mod-03 Lec-14 Vector Calculus in Geometry 1:03:07

Mod-03 Lec-15 Vector Calculus in Physics 59:01

Mod-04 Lec-16 Solution of Equations 54:44

Mod-04 Lec-17 Introduction to Optimization 54:39

Mod-04 Lec-18 Multivariate Optimization 55:12

Mod-04 Lec-19 Constrained Optimization: Optimality Criteria 55:43

Mod-04 Lec-20 Constrained Optimization: Further Issues 56:28

Mod-05 Lec-21 Interpolation 58:13

Mod-05 Lec-22 Numerical Integration 53:49

Mod-05 Lec-23 Numerical Solution of ODE's as IVP 55:44

Mod-05 Lec-24 Boundary Value Problems, Question of Stability in IVP Solution 55:12

Mod-05 Lec-25 Stiff Differential Equations, Existence and Uniqueness Theory 58:29

Mod-06 Lec-26 Theory of First Order ODE's 53:16

Mod-06 Lec-27 Linear Second Order ODE's 1:01:04

Mod-06 Lec-28 Methods of Linear ODE's 57:34

Mod-06 Lec-29 ODE Systems 53:06

Mod-06 Lec-30 Stability of Dynamic Systems 1:01:59

Mod-07 Lec-31 Series Solutions and Special Functions 55:53

Mod-07 Lec-32 Sturm-Liouville Theory 1:00:05

Mod-07 Lec-33 Approximation Theory and Fourier Series 55:01

Mod-07 Lec-34 Fourier Integral to Fourier Transform, Minimax Approximation 55:50

Mod-08 Lec-35 Separation of Variables in PDE's, Hyperbolic Equations 54:19

Mod-08 Lec-36 Parabolic and Elliptic Equations, Membrane Equation 51:43

Mod-08 Lec-37 Analytic Functions 58:07

Mod-08 Lec-38 Integration of Complex Functions 56:00

Mod-08 Lec-39 Singularities and Residues 57:24

Mod-08 Lec-40 Calculus of Variations 55:37

## No comments:

Post a Comment