Due to certain personal reasons, all website activities will be suspended for the time being (exception: might keep embedding some daily news videos).
因為一些個人因素,即日起將暫時停止所有網站的編輯與轉載活動 (還是會轉載部分時事影片)。
1. Clicking ▼&► to (un)fold the tree menu may facilitate locating what you want to find. 2. Videos embedded here do not necessarily represent my viewpoints or preferences. 3. This is just one of my several websites. Please click the category-tags below these two lines to go to each independent website.
2015-04-26
2015-04-25
Slavoj Zizek. Lacan’s four discourses and the real. 2014
source : European Graduate School Video Lectures 2015年4月25日
http://www.egs.edu/ Slavoj Zizek, Slovenian philosopher and cultural critic, talking about the theoretical richness of Lacan’s four discourses: the master’s discourse, the hysteric’s discourse, the university discourse, and the analyst’s discourse. What follows is a prolonged discussion of the various guises of the object small a in its imaginary, symbolic and real forms and its relevance for contemporary ideology critique. Public open lecture for the students and faculty of the European Graduate School EGS Media and Communication Studies department program Saas-Fee Switzerland Europe 2014 Slavoj Zizek.
Discrete Stochastic Processes by Robert Gallager (Spring 2011)
# automatic playing for the 25 videos (click the up-left corner for the list)
source: MIT OpenCourseWare Last updated on 2014年7月1日
MIT 6.262 Discrete Stochastic Processes, Spring 2011
View the complete course: http://ocw.mit.edu/6-262S11
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
1. Introduction and Probability Review 1:16:27
2. More Review; The Bernoulli Process 1:08:20
3. Law of Large Numbers, Convergence 1:21:28
4. Poisson (the Perfect Arrival Process) 1:17:14
5. Poisson Combining and Splitting 1:24:32
6. From Poisson to Markov 1:19:17
7. Finite-state Markov Chains; The Matrix Approach 55:34
8. Markov Eigenvalues and Eigenvectors 1:23:38
9. Markov Rewards and Dynamic Programming 1:23:36
10. Renewals and the Strong Law of Large Numbers 1:21:53
11. Renewals: Strong Law and Rewards 1:18:17
12. Renewal Rewards, Stopping Trials, and Wald's Inequality 1:26:21
13. Little, M/G/1, Ensemble Averages 1:14:53
14. Review 1:19:19
15. The Last Renewal 1:15:44
16. Renewals and Countable-state Markov 1:19:40
17. Countable-state Markov Chains 1:23:46
18. Countable-state Markov Chains and Processes 1:16:29
19. Countable-state Markov Processes 1:22:14
20. Markov Processes and Random Walks 1:23:09
21. Hypothesis Testing and Random Walks 1:25:23
22. Random Walks and Thresholds 1:21:17
23. Martingales (Plain, Sub, and Super) 1:22:40
24. Martingales: Stopping and Converging 1:20:44
25. Putting It All Together 1:21:27
source: MIT OpenCourseWare Last updated on 2014年7月1日
MIT 6.262 Discrete Stochastic Processes, Spring 2011
View the complete course: http://ocw.mit.edu/6-262S11
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
1. Introduction and Probability Review 1:16:27
2. More Review; The Bernoulli Process 1:08:20
3. Law of Large Numbers, Convergence 1:21:28
4. Poisson (the Perfect Arrival Process) 1:17:14
5. Poisson Combining and Splitting 1:24:32
6. From Poisson to Markov 1:19:17
7. Finite-state Markov Chains; The Matrix Approach 55:34
8. Markov Eigenvalues and Eigenvectors 1:23:38
9. Markov Rewards and Dynamic Programming 1:23:36
10. Renewals and the Strong Law of Large Numbers 1:21:53
11. Renewals: Strong Law and Rewards 1:18:17
12. Renewal Rewards, Stopping Trials, and Wald's Inequality 1:26:21
13. Little, M/G/1, Ensemble Averages 1:14:53
14. Review 1:19:19
15. The Last Renewal 1:15:44
16. Renewals and Countable-state Markov 1:19:40
17. Countable-state Markov Chains 1:23:46
18. Countable-state Markov Chains and Processes 1:16:29
19. Countable-state Markov Processes 1:22:14
20. Markov Processes and Random Walks 1:23:09
21. Hypothesis Testing and Random Walks 1:25:23
22. Random Walks and Thresholds 1:21:17
23. Martingales (Plain, Sub, and Super) 1:22:40
24. Martingales: Stopping and Converging 1:20:44
25. Putting It All Together 1:21:27
Digital Signal Processing by Alan V. Oppenheim (1975, MIT)
# automatic playing for the 22 videos (click the up-left corner for the list)
source: MIT OpenCourseWare Last updated on 2014年7月1日
MIT RES.6-008 Digital Signal Processing, 1975
Set of 20 video lectures for Signals and Systems, an introductory course in analog and digital signal processing, including seismic data processing, communications, speech processing, image processing, consumer electronics, and defense electronics.
View the complete course: http://ocw.mit.edu/RES6-008S11
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
Lec 1 Introduction 17:42
Demonstration 1: Sampling, aliasing, and frequency response, part 1 28:15
Demonstration 2: Sampling, aliasing, and frequency response, part 2 12:05
Lec 2 Discrete time signals and systems, part 1 36:56
Lec 3 Discrete time signals and systems, part 2 43:48
Lec 4 The discrete time Fourier transform 44:08
Lec 5 The z transform 51:01
Lec 6 The inverse z transform 46:57
Lec 7 z-Transform properties 56:28
Lec 8 The discrete Fourier series 43:03
Lec 9 The discrete Fourier transform 47:33
Lec 10 Circular convolution 43:19
Lec 11 Representation of linear digital networks 46:12
Lec 12 Network structures for infinite impulse response (IIR) systems 40:09
Lec 13 Network structures for finite impulse response (FIR) systems and parameter quantization effects in digital filter structures 49:34
Lec 14 Design of IIR digital filters, part 1 47:31
Lec 15 Design of IIR digital filters, part 2 41:10
Lec 16 Digital Butterworth filters 48:39
Lec 17 Design of FIR digital filters 38:27
Lec 18 Computation of the discrete Fourier transform, part 1 48:57
Lec 19 Computation of the discrete Fourier transform, part 2 44:01
Lec 20 Computation of the discrete Fourier transform, part 3 44:58
source: MIT OpenCourseWare Last updated on 2014年7月1日
MIT RES.6-008 Digital Signal Processing, 1975
Set of 20 video lectures for Signals and Systems, an introductory course in analog and digital signal processing, including seismic data processing, communications, speech processing, image processing, consumer electronics, and defense electronics.
View the complete course: http://ocw.mit.edu/RES6-008S11
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
Lec 1 Introduction 17:42
Demonstration 1: Sampling, aliasing, and frequency response, part 1 28:15
Demonstration 2: Sampling, aliasing, and frequency response, part 2 12:05
Lec 2 Discrete time signals and systems, part 1 36:56
Lec 3 Discrete time signals and systems, part 2 43:48
Lec 4 The discrete time Fourier transform 44:08
Lec 5 The z transform 51:01
Lec 6 The inverse z transform 46:57
Lec 7 z-Transform properties 56:28
Lec 8 The discrete Fourier series 43:03
Lec 9 The discrete Fourier transform 47:33
Lec 10 Circular convolution 43:19
Lec 11 Representation of linear digital networks 46:12
Lec 12 Network structures for infinite impulse response (IIR) systems 40:09
Lec 13 Network structures for finite impulse response (FIR) systems and parameter quantization effects in digital filter structures 49:34
Lec 14 Design of IIR digital filters, part 1 47:31
Lec 15 Design of IIR digital filters, part 2 41:10
Lec 16 Digital Butterworth filters 48:39
Lec 17 Design of FIR digital filters 38:27
Lec 18 Computation of the discrete Fourier transform, part 1 48:57
Lec 19 Computation of the discrete Fourier transform, part 2 44:01
Lec 20 Computation of the discrete Fourier transform, part 3 44:58
Material (Fall 2005) by Bernhardt Wuensch at MIT
# click the upper-left icon to select videos from the playlist
source: MIT OpenCourseWare Last updated on 2014年6月29日
Symmetry, Structure, and Tensor Properties of Materials
This course covers the derivation of symmetry theory; lattices, point groups, space groups, and their properties; use of symmetry in tensor representation of crystal properties, including anisotropy and representation surfaces; and applications to piezoelectricity and elasticity.
View the complete course at: http://ocw.mit.edu/3-60F05
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
Lec 1a: Symmetry, Structure, Tensor Properties of Materials 45:33
Lec 1b 45:51
Lec 2a: 50:36
Lec 2b: 52:22
Lec 3a: 54:36
Lec 3b: 49:21
Lec 4a: 57:20
Lec 4b: 48:09
Lec 5a: 54:48
Lec 5b: 36:52
Lec 6a: 50:23
Lec 6b: 38:54
Lec 7a: 59:51
Lec 7b: 35:00
Lec 8a: 49:58
Lec 8b: 42:37
Lec 10a: 35:14
Lec 10b: 48:37
Lec 11a: 46:59
Lec 11b: 50:39
Lec 12a: 53:39
Lec 13a: 58:38
Lec 13b: 39:07
Lec 14a: 18:17
Lec 14b: 1:08:37
Lec 15a: 45:53
Lec 15b: 44:06
Lec 16a: 45:01
Lec 16b: 37:59
Lec 18a: 47:39
Lec 18b: 38:54
Lec 20a: 1:03:30
Lec 20b: 31:22
Lec 21a: 47:31
Lec 21b: 41:17
Lec 22a: 52:21
Lec 23a: 57:56
Lec 23b: 39:12
Lec 24b: 39:32
Lec 24a: 51:28
Lec 26: 1:16:59
source: MIT OpenCourseWare Last updated on 2014年6月29日
Symmetry, Structure, and Tensor Properties of Materials
This course covers the derivation of symmetry theory; lattices, point groups, space groups, and their properties; use of symmetry in tensor representation of crystal properties, including anisotropy and representation surfaces; and applications to piezoelectricity and elasticity.
View the complete course at: http://ocw.mit.edu/3-60F05
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
Lec 1a: Symmetry, Structure, Tensor Properties of Materials 45:33
Lec 1b 45:51
Lec 2a: 50:36
Lec 2b: 52:22
Lec 3a: 54:36
Lec 3b: 49:21
Lec 4a: 57:20
Lec 4b: 48:09
Lec 5a: 54:48
Lec 5b: 36:52
Lec 6a: 50:23
Lec 6b: 38:54
Lec 7a: 59:51
Lec 7b: 35:00
Lec 8a: 49:58
Lec 8b: 42:37
Lec 10a: 35:14
Lec 10b: 48:37
Lec 11a: 46:59
Lec 11b: 50:39
Lec 12a: 53:39
Lec 13a: 58:38
Lec 13b: 39:07
Lec 14a: 18:17
Lec 14b: 1:08:37
Lec 15a: 45:53
Lec 15b: 44:06
Lec 16a: 45:01
Lec 16b: 37:59
Lec 18a: 47:39
Lec 18b: 38:54
Lec 20a: 1:03:30
Lec 20b: 31:22
Lec 21a: 47:31
Lec 21b: 41:17
Lec 22a: 52:21
Lec 23a: 57:56
Lec 23b: 39:12
Lec 24b: 39:32
Lec 24a: 51:28
Lec 26: 1:16:59
Single Variable Calculus by Herbert Gross
# automatic playing for the 38 videos (click the up-left corner for the list)
source: MIT OpenCourseWare Last updated on 2014年7月1日
MIT Calculus Revisited: Single Variable Calculus
Resource Description: Calculus Revisited is a series of videos and related resources that covers the materials normally found in a freshman-level introductory calculus course. The series was first released in 1970 as a way for people to review the essentials of calculus. It is equally valuable for students who are learning calculus for the first time.
About the Instructor: Herbert Gross has taught math as senior lecturer at MIT and was the founding math department chair at Bunker Hill Community College. He is the developer of the Mathematics As A Second Language website, providing arithmetic and algebra materials to elementary and middle school teachers. You can read more about Prof. Gross on his website.
Acknowledgements: Funding for this resource was provided by the Gabriella and Paul Rosenbaum Foundation.
View the complete course at: http://ocw.mit.edu/RES-18-006F10
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
Preface | MIT Calculus Revisited: Single Variable Calculus 32:06
Unit I Sets, Functions, and Limits: Lec 1 Analytic Geometry 37:42
Unit I: Lec 4 Derivatives and Limits 45:00
Unit I: Lec 5 A More Rigorous Approach to Limits 46:13
Unit I: Lec 6 Mathematical Induction 29:24
Unit II Differentiation: Lec 1 Derivatives of Some Simple Functions 28:17
Unit II: Lec 2 Approximations and Infinitesimals 34:36
Unit II: Lec 3 Composite Functions and the Chain Rule 39:16
Unit II: Lec 4 Differentiation of Inverse Functions 28:55
Unit II: Lec 5 Implicit Differentiation 39:58
Unit II: Lec 6 Continuity 22:49
Unit II: Lec 7 Curve Plotting 31:49
Unit II: Lec 8 Maxima and Minima 34:53
Unit II: Lec 9 Rolle's Theorem and its Consequences 30:28
Unit II: Lec 10 Inverse Differentiation 42:59
Unit II: Lec 11 The Definite Indefinite Integral 29:16
Unit III The Circular Function: Lec 1 Circular Functions 36:01
Unit III: Lec 2 Inverse Circular Functions 26:09
Unit IV The Definite Integral: Lec 1 The Definite Integral 36:37
Unit IV: Lec 2 Marriage of Differential and Integral Calculus 30:31
Unit IV: Lec 3 Three-Dimensional Area 42:06
Unit IV: Lec 4 One-Dimensional Area 36:45
Unit V Transcendental Functions: Lec 1 Logarithms without Exponents 34:46
Unit V: Lec 2 Inverse Logarithms 21:37
Unit V: Lec 3 What a Difference a Sign Makes 27:43
Unit V: Lec 4 Inverse Hyperbolic Functions 29:55
Unit VI More Integration Techniques: Lec 1 Some Basic Recipes 30:29
Unit VI: Lec 2 Partial Functions 32:29
Unit VI: Lec 3 Integration by Parts 27:01
Unit VI: Lec 4 Improper Integrals 29:39
Unit VII Infinite Series: Lec 1 Many Versus Infinite 26:31
Unit VII: Lec 2 Positive Series 34:50
Unit VII: Lec 3 Absolute Convergence 21:09
Unit VII: Lec 4 Polynomial Approximations 32:42
Unit VII: Lec 5 Uniform Convergence 28:57
Unit VII: Lec 6 Uniform Convergence of Power Series 27:04
source: MIT OpenCourseWare Last updated on 2014年7月1日
MIT Calculus Revisited: Single Variable Calculus
Resource Description: Calculus Revisited is a series of videos and related resources that covers the materials normally found in a freshman-level introductory calculus course. The series was first released in 1970 as a way for people to review the essentials of calculus. It is equally valuable for students who are learning calculus for the first time.
About the Instructor: Herbert Gross has taught math as senior lecturer at MIT and was the founding math department chair at Bunker Hill Community College. He is the developer of the Mathematics As A Second Language website, providing arithmetic and algebra materials to elementary and middle school teachers. You can read more about Prof. Gross on his website.
Acknowledgements: Funding for this resource was provided by the Gabriella and Paul Rosenbaum Foundation.
View the complete course at: http://ocw.mit.edu/RES-18-006F10
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
Preface | MIT Calculus Revisited: Single Variable Calculus 32:06
Unit I Sets, Functions, and Limits: Lec 1 Analytic Geometry 37:42
Unit I: Lec 2 Functions 39:43
Unit I: Lec 3 Inverse Functions 40:39Unit I: Lec 4 Derivatives and Limits 45:00
Unit I: Lec 5 A More Rigorous Approach to Limits 46:13
Unit I: Lec 6 Mathematical Induction 29:24
Unit II Differentiation: Lec 1 Derivatives of Some Simple Functions 28:17
Unit II: Lec 2 Approximations and Infinitesimals 34:36
Unit II: Lec 3 Composite Functions and the Chain Rule 39:16
Unit II: Lec 4 Differentiation of Inverse Functions 28:55
Unit II: Lec 5 Implicit Differentiation 39:58
Unit II: Lec 6 Continuity 22:49
Unit II: Lec 7 Curve Plotting 31:49
Unit II: Lec 8 Maxima and Minima 34:53
Unit II: Lec 9 Rolle's Theorem and its Consequences 30:28
Unit II: Lec 10 Inverse Differentiation 42:59
Unit II: Lec 11 The Definite Indefinite Integral 29:16
Unit III The Circular Function: Lec 1 Circular Functions 36:01
Unit III: Lec 2 Inverse Circular Functions 26:09
Unit IV The Definite Integral: Lec 1 The Definite Integral 36:37
Unit IV: Lec 2 Marriage of Differential and Integral Calculus 30:31
Unit IV: Lec 3 Three-Dimensional Area 42:06
Unit IV: Lec 4 One-Dimensional Area 36:45
Unit V Transcendental Functions: Lec 1 Logarithms without Exponents 34:46
Unit V: Lec 2 Inverse Logarithms 21:37
Unit V: Lec 3 What a Difference a Sign Makes 27:43
Unit V: Lec 4 Inverse Hyperbolic Functions 29:55
Unit VI More Integration Techniques: Lec 1 Some Basic Recipes 30:29
Unit VI: Lec 2 Partial Functions 32:29
Unit VI: Lec 3 Integration by Parts 27:01
Unit VI: Lec 4 Improper Integrals 29:39
Unit VII Infinite Series: Lec 1 Many Versus Infinite 26:31
Unit VII: Lec 2 Positive Series 34:50
Unit VII: Lec 3 Absolute Convergence 21:09
Unit VII: Lec 4 Polynomial Approximations 32:42
Unit VII: Lec 5 Uniform Convergence 28:57
Unit VII: Lec 6 Uniform Convergence of Power Series 27:04
Multivariable Calculus by Herbert Gross
# automatic playing for the 26 videos (click the up-left corner for the list)
source: MIT OpenCourseWare Last updated on 2014年7月2日
MIT Calculus Revisited: Multivariable Calculus
This course is a study of the calculus of functions of several variables (vector arithmetic and vector calculus).
View the complete course at: http://ocw.mit.edu/RES.18-007F11
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
Part I: Vector Arithmetic, Lec 1 20:08
Part I: Vector Arithmetic, Lec 2 28:02
Part I: Vector Arithmetic, Lec 3 26:43
Part I: Vector Arithmetic, Lec 4 30:06
Part I: Vector Arithmetic, Lec 5 32:14
Part I: Vector Arithmetic, Lec 6 28:05
Part II: Vector Calculus, Lec 1 38:50
Part II: Vector Calculus, Lec 2 28:24
Part II: Vector Calculus, Lec 3 31:00
Part II: Vector Calculus, Lec 4 28:05
Part III: Partial Derivatives, Lec 1 33:05
Part III: Partial Derivatives, Lec 2 35:33
Part III: Partial Derivatives, Lec 3 33:15
Part III: Partial Derivatives, Lec 4 38:34
Part III: Partial Derivatives, Lec 5 27:20
Part III: Partial Derivatives, Lec 6 29:24
Part IV: Matrix Algebra, Lec 1 47:55
Part IV: Matrix Algebra, Lec 2 41:13
Part IV: Matrix Algebra, Lec 3 45:43
Part IV: Matrix Algebra, Lec 4 28:39
Part IV: Matrix Algebra, Lec 5 34:49
Part V: Multiple Integration, Lec 1 29:59
Part V: Multiple Integration, Lec 2 26:34
Part V: Multiple Integration, Lec 3 33:07
Part V: Multiple Integration, Lec 4 24:08
Part V: Multiple Integration, Lec 5 28:41
source: MIT OpenCourseWare Last updated on 2014年7月2日
MIT Calculus Revisited: Multivariable Calculus
This course is a study of the calculus of functions of several variables (vector arithmetic and vector calculus).
View the complete course at: http://ocw.mit.edu/RES.18-007F11
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu
Part I: Vector Arithmetic, Lec 1 20:08
Part I: Vector Arithmetic, Lec 2 28:02
Part I: Vector Arithmetic, Lec 3 26:43
Part I: Vector Arithmetic, Lec 4 30:06
Part I: Vector Arithmetic, Lec 5 32:14
Part I: Vector Arithmetic, Lec 6 28:05
Part II: Vector Calculus, Lec 1 38:50
Part II: Vector Calculus, Lec 2 28:24
Part II: Vector Calculus, Lec 3 31:00
Part II: Vector Calculus, Lec 4 28:05
Part III: Partial Derivatives, Lec 1 33:05
Part III: Partial Derivatives, Lec 2 35:33
Part III: Partial Derivatives, Lec 3 33:15
Part III: Partial Derivatives, Lec 4 38:34
Part III: Partial Derivatives, Lec 5 27:20
Part III: Partial Derivatives, Lec 6 29:24
Part IV: Matrix Algebra, Lec 1 47:55
Part IV: Matrix Algebra, Lec 2 41:13
Part IV: Matrix Algebra, Lec 3 45:43
Part IV: Matrix Algebra, Lec 4 28:39
Part IV: Matrix Algebra, Lec 5 34:49
Part V: Multiple Integration, Lec 1 29:59
Part V: Multiple Integration, Lec 2 26:34
Part V: Multiple Integration, Lec 3 33:07
Part V: Multiple Integration, Lec 4 24:08
Part V: Multiple Integration, Lec 5 28:41
Subscribe to:
Posts (Atom)