網頁

Quantum Physics (Fall 2010) by Robert Littlejohn at UC Berkeley


source: CosmoLearning      2017年8月1日
UC Berkeley: Physics 221A - Quantum Physics (Fall 2010)
Course information: http://bohr.physics.berkeley.edu/classes/221/1011/221a.html

55:27 Lec 01 The Mathematical Formalism of Quantum Mechanics
56:06 Lec 02 Hermitian, Anti Hermitian and Unitary Operators
55:06 Lec 03 Simultaneous Eigenbases of Commuting Observables
55:48 Lec 04 The Postulates of Quantum Mechanics
53:40 Lec 05 The Density Operator & Spatial Degrees of Freedom
52:45 Lec 06 Wave Functions and Translation Operators
54:45 Lec 07 Time Evolution in Quantum Mechanics
53:34 Lec 08 One Dimensional Wave Mechanics
55:16 Lec 09 The WKB Method
10 1:03:27 Lec 10 The WKB Method Scattering Problem and Oscillator
11 54:26 Lec 11 The Harmonic Oscillators and Coherent States
12 49:26 Lec 12 Harmonic Oscillator Eigenfunctions & The Heisenberg Picture
13 54:24 Lec 13 The Propagator and the Path Integral
14 52:34 Lec 14 Stationary Action and Hamilton’s Principle
15 55:06 Lec 15 Path Integral for the Free Particle
16 53:50 Lec 16 Charged Particles in Magnetic Fields Classical Motion
17 54:46 Lec 17 Charged Particles in Magnetic Fields II Energy Eingefunctions
18 52:59 Lec 18 Rotations in Ordinary Space
19 50:57 Lec 19 Infinitesimal and Finite Rotations
20 52:02 Lec 20 Rotations in Quantum Mechanics, and Rotations of Spin ½ System
21 53:41 Lec 21 Representations of the Angular Momentum Operators and Rotations
22 53:58 Lec 22 Spins in Magnetic Fields and the Stern–Gerlach experiment
23 51:41 Lec 23 Magnetic Moments, Rotational Invariance, and Degeneracies
24 53:35 Lec 24 Orbital Angular Momentum and Spherical Harmonics
25 53:29 Lec 25 Angular Momentum Basis & Radial Schrödinger Equation
26 54:38 Lec 26 Central Force Motion WKB Theory and Spherical Bessel Functions
27 53:24 Lec 27 The Hydrogen Atom
28 53:36 Lec 28 Coupling of Angular Momenta
29 51:06 Lec 29 Tensor Product of Operators, Pauli Equation
30 52:01 Lec 30 Irreducible Tensor Operators and the Wigner Eckart Theorem
31 51:26 Lec 31 Reducible and Irreducible Spaces of Operators
32 53:11 Lec 32 Proof of the Wigner Eckart Theorem
33 49:12 Lec 33 Properties Under Parity
34 50:39 Lec 34 Time Reversal and Antilinear Operators
35 52:31 Lec 35 Spatial and Spin Degrees of Freedom and Time Reversed Motion
36 51:43 Lec 36 Bound State Perturbation Theory
37 56:04 Lec 37 The Stark Effect in Hydrogen and Alkali Atoms
38 51:58 Lec 38 The Stark Effect in Hydrogen and Alkali Atoms II
39 42:30 Lec 39 Fine Structure in Hydrogen and Alkali Atoms
40 51:47 Lec 40 The Zeeman Effect in Hydrogen and Alkali Atoms
41 50:20 Lec 41 Deuteron Final Lecture

Multivariable Calculus with Edward Frenkel at UC Berkeley


source: CosmoLearning       2017年8月5日
MATH 53: Multivariable Calculus with Edward Frenkel

1:19:50 Lecture 01. Curves in 2D and 3D Spaces
1:19:27 Lecture 02. Tangent Lines for Parametric Curves
1:19:04 Lecture 03. Arc Length for Parametric Curves, and Polar Coordinates
1:16:59 Lecture 04. Polar Coordinates & Vector Algebra
1:20:51 Lecture 05. Lines and Planes in ℝ³
1:21:03 Lecture 06. Parametric Curves in ℝ³
1:18:28 Lecture 07. Limits
1:19:29 Lecture 08. Partial Derivatives
1:19:36 Lecture 09. Differentials
10 1:18:15 Lecture 10. Review for Midterm Exam 1
11 1:20:24 Lecture 11. Directional Derivatives
12 1:18:49 Lecture 12. Maximum and Minimum Functions
13 1:20:03 Lecture 13. Lagrange Multipliers
14 1:20:24 Lecture 14. Double Integrals
15 1:19:36 Lecture 15. Triple Integrals in Cylindrical and Spherical Coordinates
16 1:18:56 Lecture 16. More on Triple Integrals
17 1:19:46 Lecture 17. Review for Midterm Exam 2
18 1:20:05 Lecture 18. Line Integrals of Vector Fields
19 1:20:48 Lecture 19. The Gradient Theorem (Fundamental Theorem of Line Integrals)
20 1:19:23 Lecture 20. Green's Theorem
21 1:19:46 Lecture 21. Curl and Divergence of a Vector Field
22 1:20:17 Lecture 22. Surface Integrals
23 1:21:54 Lecture 23. Stokes' Theorem (Generalization of Green's Theorem in ℝ³) 
24 1:19:27 Lecture 24. The Divergence Theorem (Gauss' Theorem)
25 1:13:25 Lecture 25. Review of Multivariable Calculus by Edward Frenkel

Designing Information Devices and Systems I (Spring 2015)--UC Berkeley


source: Cal ESG       2015年1月23日 /  playlist compiled by CosmoLearning https://cosmolearning.org/courses/designing-information-d...
Course source and information: http://www-inst.eecs.berkeley.edu/~ee16a/sp15/#lec
Instructors: Elad Alon, Gireeja Ranade, Claire Tomlin, Babak Ayazifar, Vivek Subramanian. 

EE16A_Sp15- 1-22 1:09:54
EE16A_Sp15-1-27 1:17:00
EE16A_Sp15-1-29 1:23:59
EE16A_Sp15-2-3 1:18:57
EE16A_Sp15-2-5 1:21:04
EE16A_Sp15-2-10 1:20:34
EE16A_Sp15-2-12 1:20:06
EE16A_Sp15-2-17 1:18:51
EE16A_Sp15-2-24 1:22:49
EE16A_Sp15-2-26 1:24:23
EE16A_Sp15-3-3 1:21:29
EE16A_Sp15-3-5 1:20:25
EE16A_Sp15-3-10 1:21:05
EE16A_Sp15-2-12 1:23:05
EE16A_Sp15-3-17 1:20:08
EE16A_Sp15-3-19 1:20:39
EE16A_Sp15-3-31 1:24:39
EE16A_Sp15-4-2 1:21:57
EE16A_Sp15-4-7 1:22:04
EE16A_Sp15-4-14 1:25:31
EE16A_Sp15-4-16 1:21:13
EE16A_Sp15-4-21 1:27:15
EE16A_Sp15-4-23 1:19:59
EE16A_Sp15-4-28 1:22:34
EE16A_Sp15-4-30 51:24
EE16A review session 3:13:44